

Available online at www.sciencedirect.com

Journal of Power Sources 119-121 (2003) 743-748

www.elsevier.com/locate/jpowsour

Spectroscopic studies of the structural transitions in positive electrodes for lithium batteries

C.M. Julien^{a,*}, M. Massot^b

^aLaboratoire des Milieux Désordonnés et Hétérogènes, UMR 7603, Université Pierre et Marie Curie, 4 place Jussieu, Case 86, 75252 Paris Cedex 05, France ^bLaboratoire de Physique des Milieux Condensés, UMR 7602, Université Pierre et Marie Curie, 4 place Jussieu, Case 77, 75252 Paris Cedex 05, France

Abstract

We present the vibrational features of MnO_2 , $Li_{0.33}MnO_2$, Li_xCoO_2 and $Li_xMn_2O_4$ used as positive electrode materials in lithium batteries. Raman and FTIR spectroscopies yield a reliable description of lattice when either crystalline disorder or phase transition due to Li insertion is expected. The local arrangement in the γ -MnO₂ structure is investigated as a function of the pyrolusite intergrowth rate. The phase evolution in Li_xCoO_2 and $Li_xMn_2O_4$ is studied as a function of the degree of deintercalation.

© 2003 Published by Elsevier Science B.V.

Keywords: FTIR spectroscopy; Transition-metal oxides; Manganese dioxides (MDOs)

1. Introduction

Stimulated investigations of transition-metal oxides, which are currently used as positive electrodes in rechargeable lithium batteries, have been directed toward high electrochemical efficiency [1–3]. Among these materials, we consider the following systems: manganese dioxides (MDOs), 2D LiCoO₂ oxides with the α -NaFeO₂-type structure, and 3D spinel LiMn₂O₄. Since their electrochemical features depend on their crystal nature, size and shape, various kinds of preparation methods have been developed to improve their characteristics, such as rechargeability and the capacity retention upon cycling. The current debate consists in the investigation of the local structure of these compounds because of the difficulty encountered in using powder X-ray and neutron diffraction for an unambiguous structural determination.

Among the local probes, Raman scattering (RS) and Fourier transform infrared (FTIR) spectroscopy are techniques sensitive to the short-range environment of oxygen coordination around the cations [4]. As a first approximation, spectra consist of a superposition of the components of all local entities present in the same material in contrast to diffraction data which give a weighted average of similar interplanar spacing. As a general rule, the frequencies and relative intensities of the bands are sensitive to coordination geometry and oxidation states.

In this paper, we present the vibrational features of γ -MnO₂, Li_{0.33}MnO₂, Li_xCoO₂ and Li_xMn₂O₄. We investigate the local structure in γ -MnO₂ as a function of the pyrolusite intergrowth rate. We report structural features of Li_{0.33}MnO₂ and those of $Li_{r}CoO_{2}$ and $Li_{r}Mn_{2}O_{4}$ as a function of the degree of deintercalation. Experimental procedures are those described elsewhere [5].

2. Vibrational features of MnO₂

The XRD patterns of γ -MnO₂ powders are of rather poor quality and consist at best of a small number of sharp and broad lines on top of a diffuse background. The structure of γ -MnO₂ can be seen as an intergrowth (Pr value) of pyrolusite (β -MnO₂) blocks within a ramsdellite (R-MnO₂) matrix. The crystal chemistry led De Wolff to propose a structural model of γ -MnO₂ based on the observation that rutile and ramsdellite structures have similar arrangements along their a and c axes and differ only by the width of the infinite strings of MnO_6 octahedra along the *b* axis [6]. The procedure established by Pannetier uses the position of the (1 1 0) Bragg line and the difference in degrees 2θ between the (2 1 1) and (2 4 0) reflections to determine Pr [7].

A careful examination of the spectroscopic results published earlier by workers and of those that are more recently

^{*} Corresponding author. Tel.: +33-144-274561; fax: +33-144-273854. E-mail address: cjul@ccr.jussieu.fr (C.M. Julien).

Fig. 1. Raman spectra of ramsdellite (R-MnO₂) and pyrolusite (β-MnO₂).

appeared shows discordance regarding the Raman spectra of MnO_2 due to the general peculiarity of low Raman activity of vibrational features in MDOs [8–11]. All measurements are concerned with the mid-infrared region 400–4000 cm⁻¹ but they did not pay attention to the far-infrared region 100–800 cm⁻¹ where IR is sensitive to octahedra polymerisation, which provides a means to measure the concentration of pyrolusite microdomains in γ -MnO₂.

Figs. 1 and 2 shows the RS and FTIR spectra, respectively, of the end members of the nsutite family, β -MnO₂ and R-MnO₂. Raman features of MnO₂ are very weak even for well-crystallised compounds. The RS spectrum of β -MnO₂

Fig. 2. FTIR absorption spectra of ramsdellite (R-MnO₂) and pyrolusite (β -MnO₂).

has relatively sharp peaks indicative of a well-developed rutile-type structure with an interstitial space consisting of narrow one-dimensional $T_{1,1}$ channels. The main contributions are attributed to the stretching mode of the MnO₆ octahedra. The corresponding anti-symmetric stretching modes are recorded in the FTIR spectrum at 517 and 621 cm⁻¹. RS peaks at lower frequencies are attributed to the deformation modes of the metal-oxygen chain of Mn–O–Mn in the MnO₂ octahedral lattice. The RS spectrum of R–MnO₂ displays three main contributions which are indicative of a welldeveloped orthorhombic structure with an interstitial space consisting of $T_{1,2}$ channels.

The spectral identification of the polymerisation by edgesharing of the MnO₆ octahedra in MDOs was obtained from Raman data. Fig. 3 presents the frequency position of the major Raman-active modes as a function of the average MnO₆ octahedral polymerisation in several MDOs structures. A trend is also observed showing a general decrease in band wavenumber with increasing octahedral polymerisation. The two sets of stretching modes, noted v_1 and v_2 , allow a direct comparison between the Raman patterns of manganese oxides. Starting from pyrolusite with two shared edges per MnO₆ octahedron, one reaches the point for manganosite (MnO having the NaCl structure) with eight shared edges per MnO₆ octahedron that gave the lowest wavenumber $v_1 = 531 \text{ cm}^{-1}$. To apply this correlation, the position of the low-energy Raman band of the birnessite MnO_{1.86}·0.6H₂O supports its proposed layered structure, which places it at 4.8 shared edges per octahedron.

RS spectra of γ -MnO₂ have been recorded for various Pr-values. Knowing that, as a first approximation, spectra consist of a superposition of the components of all local entities, a careful examination show further behaviour. RS features exhibit variations in band position and intensity which cannot be reproduced by addition of various proportions of pyrolusite and ramsdellite spectra [12]. Fig. 4 displays the RS

Fig. 3. Frequency position of the Raman-active modes as a function of the average MnO_6 octahedral polymerisation in various MDOs. Dots represent the predominant Raman bands.

Fig. 4. RS spectra of γ -MnO₂ with various Pr values. Sample numbers are (a) γ -MnO₂ with Pr = 29%, (b) γ -MnO₂ with Pr = 34% (Hoechst), (c) γ -MnO₂ with Pr = 37% (EMD activated), (d) γ -MnO₂ EMD with Pr = 61%, (e) γ -MnO₂ (Puratronic, Alpha-Ventron) with Pr = 75%.

spectra of five γ -MnO₂ compounds electrochemically synthesised with $29 \le Pr \le 75\%$. Except for a sample with Pr = 61%, all the bands are shifted toward the high-frequency side as Pr increases; this is due to the increasing concentration of pyrolusite microdomains in the γ -MnO₂ matrix. Therefore, the bands in the range 500–700 cm^{-1} are considered as the characteristic features of y-MnO2. A close examination of this spectral region allows to consider the three main bands of R–MnO₂, noted v_2 , v_3 , and v_4 . As the amount of pyrolusite defect increases in the ramsdellite network, we observe a frequency shift of the bands v_2 and v_4 toward those of β -MnO₂ phase (at higher wavenumber) while v_3 remains almost at the same position. The pyrolusite-like peak at 630 cm^{-1} appears as a shoulder in the γ -MnO₂ phase with Pr = 61%, while the band at 654 cm^{-1} is located in between v_2 of R-MnO₂ (630 cm⁻¹) and v_2 of β -MnO₂ (665 cm⁻¹).

Fig. 5 presents the variation of the Raman band frequencies as a function of the structural parameter Pr in γ -MnO₂ showing an accurate elucidation of the quantitative determination of the structural disorder present in γ -MnO₂. A linear relationship exists between the Raman frequency of the three main bands and Pr. Because MDOs are constituted of condensed polyhedra interlinked by either edges or corners (such as in spinel structures), we must consider the possibility of vibrational interactions between identical octahedra. Considering the local structure of γ -MnO₂ compounds, the MnO₆ octahedra are edge sharing groups, much more important vibrational interactions are expected in the direction of the O–Mn–O–Mn–O chains. According to the classical structural model for the nsutite-type compounds, defects expand in the directions perpendicular to the chains

Fig. 5. Variation of Raman frequencies as a function of the structural parameter Pr in $\gamma\text{-}MnO_2.$

and consequently influence the lattice vibrations of condensed octahedra with respect to that of isolated species.

3. Vibrational features of Li_{0.33}MnO₂

Fig. 6a–b shows the vibrational spectra of lithiated $Li_{0.33}MnO_2$. The crystal structure of $Li_{0.33}MnO_2$ examined

Fig. 6. Raman and FTIR spectra of Li_{0.3}MnO₂.

by XRD corresponds to a new MnO₂ with an ordered alternation of (1×2) and (1×1) channels of the γ -MnO₂ phase. RS and FTIR as local probes show that lithium ions are located in octahedral sites in the (1×2) channels. Significant changes are seen in the MnO₆ octahedral arrangement from sample to sample by examining the spectra in a high-frequency region compared with their parents that are pyrolusite and ramsdellite. The IR peak at 579 cm^{-1} corresponds to the anti-symmetric stretching mode of the MnO₆ octahedra. As this peak appears at 618 cm^{-1} in β -MnO₂, we assume that the lithiation proceeds with a frequency shift of the MoO₆ stretch due to the change in the average Mn valency and the modification in the chemical bonding of the MoO₆ octahedra in the Li_{0.3}MnO₂ lattice. The comparison of spectra of either $R-MnO_2$ or $\beta-MnO_2$ with $Li_{0.3}MnO_2$ in the far-infrared region (below 300 cm⁻¹) leads that the appearance of the peak at 243 cm^{-1} is the consequence of the lithiation.

4. Lattice dynamics of Li_xCoO₂

LiCoO₂ has been proposed as a cathode for a lithium battery by Mizushima et al. [13] and currently it is being used in commercial rechargeable Li-ion batteries. Fig. 7 displays the FTIR absorption spectra of Li_xCoO_2 cathodeactive materials as a function of x(Li). As predicted from the factor group analysis, one observes four distinct IR bands at 269, 420, 539, and 602 cm⁻¹ along with a shoulder at 646 cm⁻¹. To get a better understanding, we consider the LiCoO₂ structure which consists of compressed CoO₆ and elongated LiO₆ octahedra that yields distinct vibrations in two different regions, i.e. at 400–650 cm⁻¹ there are bands due to

Fig. 7. FTIR absorption spectra of Li_xCoO_2 as a function of x(Li) in the range $0.4 \le x \le 1.0$.

 CoO_6 vibrations (Co–O stretching and O–Co–O bending), while the LiO₆ stretching mode appears at 269 cm⁻¹ [14].

Upon lithium de-intercalation changes are as follows: (a) a decrease of the oscillator strength and a broadening of all the IR-bands can be associated to a disorder induced by the departure of Li-ions located between two CoO₂ blocks. The broadening of the low-frequency band can be also attributed to the random distribution of the Li-ions remaining in the host matrix; (b) no frequency change is observed for the high-wavenumber bands which are assigned to the CoO_6 vibrations. Thus, as expected, we can conclude that the CoO_2 layers are not affected significantly by the lithium de-intercalation process; (c) a significant shift of the lowfrequency band is recorded. This band shifts toward the lowenergy side from 269 to 258 cm^{-1} in $\text{Li}_{0.5}\text{CoO}_2$. The frequency shift corresponds to the increase in the interlayer spacing due to an increase of the repulsive interactions between two adjacent negatively charged CoO₂ layers upon de-lithiation. Thus, the interlayer force constant is reduced by about 8%. (d) The increase of the far-infrared absorption of the $Li_{0.4}CoO_2$ sample is attributed to the Drude edge due to the change in the electrical conductivity of the material. This suggests the existence of collective delocalized electrons. These results agree well with the p-type semi-conducting character of LiCoO₂ (band gap $E_g = 2.7 \text{ eV}$) while $\text{Li}_x \text{CoO}_2$ for $x \leq 0.75$ has a metal-like behaviour [15]. For every Li removed from the LiCoO₂ lattice, an electron hole is created within the valence band. For x < 0.75, we expect that there are sufficient holes to allow for a significant degree of screening, and in this regime, the hole states in the valence bands are likely to be delocalized, such that Li_xCoO_2 exhibits metallic electronic properties. This behaviour is clearly observed in the FTIR absorption spectra where absorption by holes is observed in the low-wavenumber region. The occurrence of delocalised holes contribute to the free energy of the electrode, influencing both the energetic and entropic terms [15]. This could be at the origin of the two-phase region observed in the potential curves of the $Li//LiCoO_2$ cells. From IR data, we remark that $LiCoO_2$ is less sensitive to lithium content due to the higher bond covalency in the CoO₂ slabs than LiNiO₂ does. Consequently, the strong bond covalency in LiCoO₂, with reduced Co-O bond distance, results in stabilisation of Co^{III} in a low-spin ground state, and reduces the electronic conductivity of the compound. By de-intercalating lithium into materials, the repulsion of the negatively charged CoO2 layers increases and the Co^{4+}/Co^{3+} redox couple offers the possibility of electronic transfer. This cation oxidation results in an increase of the conductivity due to the decrease of the covalent character of the CoO₂ slabs.

5. Vibrational features of Li_xMn₂O₄

FTIR results by Richardson and Ross [16], and Julien et al. [17] showed evolution of the IR bands for cubic $Li_xMn_2O_4$,

Fig. 8. FTIR spectra of the $Li_xMn_2O_4$ spinel as a function of x(Li) in the range $0.1 \le x \le 1.2$.

but could not clearly identify different cubic phases of $\text{Li}_x \text{Mn}_2 \text{O}_4$ when *x* varied from 0.1 to 1.0. Few works reported the far-IR spectra of $\text{Li}_x \text{Mn}_2 \text{O}_4$ spinel phases. Ammundsen et al. [18] have calculated the lattice dynamics of lithium manganese oxides using atomistic modelling methods. Recent in situ Raman studies on $\text{Li}_x \text{Mn}_2 \text{O}_4$ have been reported by Huang and Frech [19].

Fig. 8 shows the FTIR absorption spectra of the spinel $Li_xMn_2O_4$ as a function of the x(Li) in the range $0.1 \le x \le 1.2$. For $0.3 \le x \le 1.0$, IR spectra of delithiated phases have the same shape as the initial spinel LiMn₂O₄; they consist of a series of broad bands between 150 and 650 cm^{-1} which all correspond to modes with the F_{1u} symmetry (group factor analysis O_h^7). The FTIR spectrum of LiMn₂O₄ spinel is dominated by two strong absorption bands at ca. 619 and 513 cm^{-1} . Four weak bands are observed in the low-frequency region at ca. 225, 277, 367 and 420 cm^{-1} . The high-frequency bands located at ca. 619 and 513 cm^{-1} involve mainly displacement of oxide ions. They are attributed primarily to the asymmetric stretching modes of MnO₆ octahedra. It is obvious that such vibrations are rather more complex because an isolated MnO₆ octahedron does not exist in the spinel framework, but octahedra are connected with other MnO₆ octahedra and LiO₄ tetrahedra. Therefore, the low-frequency bands at ca. 225, 277 and 420 cm^{-1} can be primarily assigned to the deformation vibrations of the O-Mn-O groups, i.e. bending modes of MnO_6 octahedra. The weak IR-band at 367 cm⁻¹ disappears for the delithiated Li_{0.1}Mn₂O₄ phase whereas the two other low-frequency bands at 225 and 277 cm⁻¹ remain almost at the same frequency. The mode that has its principal origins in vibrations of the Li lattice is the one which disappears on removal of lithium ions. It is an experimental fact that the IR absorption bands related to the stretching vibrations of LiO₄

tetrahedra are generally found in the 350–500 cm^{-1} region [20]. This is true, however, only in the absence of important vibrational interactions between LiO₄ tetrahedra and the other coordinated groups present in the structure. It was recognised that the atomic displacements contributing to the infrared spectra of spinel phases vary from compound to compound, depending on the masses, charges, and chemical properties of ions. The stretch of the LiO₄ has appeared out at 472 cm^{-1} in Li₃PO₄ whereas the frequency 435 cm^{-1} is pointed in the spinel LiFeCr₄ O_8 [20]. It was also demonstrated that, in inorganic oxide glasses, the IR resonant frequencies of alkali metal cations in their equilibrium positions are as cation mass dependent bands [21] Due to important vibrational interactions between LiO₄ tetrahedra and MnO₆ groups, this leads to the frequency at ca. 367 cm^{-1} for oscillation of the Li⁺ ion against O²⁻ near neighbours in LiMn₂O₄.

6. Conclusion

RS and FTIR spectroscopies have proven to be useful tools for the identification of the nsutite γ -MnO₂ phases. Because of their sensitiveness to short range order, Raman and FTIR give more reliable information than X-ray diffraction when applied to structural defects in γ -MnO₂. We have been able to show that elucidation of the quantitative determination of the structural disorder present in γ -MnO₂ is accurate by RS spectroscopy. The comparison of spectra of either R-MnO₂ or β -MnO₂ with Li_{0.3}MnO₂ in the far-infrared region (below 300 cm⁻¹) leads that the appearance of the peak at 243 cm⁻¹ is the consequence of the lithiation.

Infrared studies of λ -LiMn₂O₄ and LiCoO₂ have shown that the spectral modifications during the deintercalation of Li ions from the host lattice reflect the phases and structural modifications in these compounds. The increase of the farinfrared absorption of the Li_{0.4}CoO₂ sample is attributed to the Drude edge due to the change in the electrical conductivity of the material. This suggests the existence of collective delocalized electrons. The local environment model for Li_xMn₂O₄ shows that the stretching mode of structural LiO₄ entities occurs in the intermediate frequency region at 367 cm⁻¹.

References

- [1] J. Hunter, J. Solid State Chem. 39 (1981) 142.
- [2] M.M. Thackeray, P. Johnson, L. de Piciotto, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 19 (1984) 179.
- [3] T. Ohzuku, M. Kitagawa, T. Hirai, J. Electrochem. Soc. 137 (1990) 769.
- [4] C. Julien, Solid State Ion. 136–137 (2000) 877.
- [5] C. Julien, NATO Sci. Ser. II-81 (2002) 235.
- [6] P.M. De Wolff, Acta Crystallogr. 12 (1959) 341.
- [7] Y. Chabre, J. Pannetier, Prog. Solid State Chem. 23 (1995) 1.
- [8] B.R. Strohmeier, D.M. Hercules, J. Phys. Chem. 88 (1984) 4923.

- [9] F. Kapteijn, A.D. van Langeveld, J.A. Moulijn, A. Andreini, M.A. Vuurman, A.M. Turek, J.M. Jehng, I.E. Washs, J. Catal. 150 (1994) 94.
- [10] D. Gosztola, M.J. Weaver, J. Electranal. Chem. Interf. Electrochem. 271 (1989) 141.
- [11] M.C. Bernard, A. Hugot-Le Goff, B.V. Thi, S. Cordoba de Torresi, J. Electrochem. Soc. 140 (1993) 3065.
- [12] C. Julien, S. Rangan, M. Lemal, M. Massot, D. Guyomard, J. Raman Spectrosc. 33 (2002) 223.
- [13] K. Mizushima, P.C. Jones, J.B. Goodenough, Mater. Res. Bull. 15 (1980) 783.

- [14] C. Julien, Ionics 6 (2000) 30.
- [15] A. Van der Ven, M.K. Aydinol, G. Ceder, Mater. Res. Soc. Symp. Proc. 496 (1998) 121.
- [16] T.J. Richardson, P.N. Ross Jr., Mater. Res. Bull. 31 (1996) 935.
- [17] C. Julien, A. Rougier, E. Haro-Poniatowski, G.A. Nazri, Mol. Cryst. Liq. Cryst. 311 (1998) 81.
- [18] B. Ammundsen, G.R. Burns, M.S. Islam, H. Kanoh, J. Rozière, J. Phys. Chem. 103 (1999) 5175.
- [19] W. Huang, R. Frech, J. Power Sources 81/82 (1999) 616.
- [20] J. Preudhomme, P. Tarte, Spectrochim. Acta 27A (1971) 845.
- [21] G.J. Exarhos, W.N. Risen, Solid State Commun. 11 (1972) 755.